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ABSTRACT

Recent developments in router level topology discovery

have suggested the introduction of IGMP probing, instead of

standard techniques such as traceroute and alias resolution.

Indeed, with a single IGMP probe, one can obtain all multi-

cast interfaces and links of a router. If IGMP probing is a fas-

cinating approach, we noticed that IGMP probes are subject

to filtering, leading so to the fragmentation of the collected

multicast graph into several disjoint connected components.

In this paper, we first quantify the effects of IGMP filtering

in large tier-1 ISPs and show that resulting topologies are

heavily fragmented. Using traceroute data, we construct a

hybrid graph and estimate how far each IGMP fragment is

from each other. Based on the distance distribution resulting

from this analysis, we demonstrate that most IGMP compo-

nents can be merged into a large connected multicast compo-

nent. We thus propose and evaluate an efficient approach for

reconnecting IGMP components at the router level. The key

idea is to recursively use IP level information and alias res-

olution to reassemble disjoint fragments and, thus, progres-

sively extend the mapping of the targeted ISP. Using such a

hybrid approach, our goal is to reduce the inference of false

links and routers introduced by common topology discovery

techniques, we are therefore able to reconstruct, at least, the

backbone of targeted routing domains.

1. INTRODUCTION

Since the late 90’s, the Internet topology discovery
has known a growing interest, leading to several papers
proposing new tools for collecting data [1]. The Inter-
net topology can be seen at three different levels. The
first one, the IP interface level, that considers IP inter-
faces of routers and end-systems, can be obtained using
traceroute-based tools [2, 3, 4, 5, 6]. On the second
level, the router level, the topology is seen as a graph
where routers are nodes. Such a representation is gener-
ally obtained by aggregating IP interfaces (collected via
the traceroute tool) through a technique called alias res-
olution [7]. Finally, the AS level provides information
about the connectivity of Autonomous Systems (ASes).
This information is not primarily drawn from active
measurements, but rather from inter-domain routing

information and address databases. In this paper, we
focus on the router level.

Inferring the router level topology of IP networks
is an important aspect, in particular to study routing
characteristics. More specifically, inferring the design of
a AS is crucial for analyzing intra-domain routing pro-
tocol performance. Network protocols designers should
evaluate the performance of their proposals on real-
istic topologies in order to highlight their advantages
and limitations. Inferring AS at the router level may
help them to develop efficient solutions able to perform
well on various topology designs and common patterns.
However, tools for capturing the router vision of ASes
come with a cost. On one hand, traceroute is known as
being redundant [8] and collected information can be
biased. Indeed, false links between routers might still
be suggested due to per packet load balancing [9], rout-
ing changes between subsequent probes (i.e., network
dynamics), MPLS tunnels, and so on. On the other
hand, active alias resolution (i.e., based on additional
probing) can be intrusive, while passive techniques (i.e.,
based on graph analysis) might be resource consuming.
Further, alias resolution is prone to error as false posi-
tives (i.e., two IP addresses are declared as aliases while
they do not belong to the same router) can arise [7].

The recently introduced Merlin [10] [11], an exten-
sion to mrinfo [12], does not suffer from those issues.
Indeed, based on IGMP probing, Merlin can natively
discover multicast topologies at the router level with a
low probing cost [12, 13, 14], avoiding so the use of
any alias resolution techniques: with a single IGMP
probe, Merlin is able to obtain all multicast inter-
faces and IP neighbors of the targeted router. While
the resulting vision may be incomplete (because lim-
ited to its multicast part), it is also less subject to false
positives than common topology discovery techniques.
When probing a multicast enabled AS with Merlin,
we expect obtaining its complete backbone as it should
be entirely multicast to ensure the correct PIM tree es-
tablishment. By multicast backbone, we mean the AS
areas where links and routers providing connectivity to
non multicast customers or peers are pruned. Unfortu-
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nately, some routers do not reply to IGMP probes sent
by Merlin, leading to an anonymous behavior that is
similar to the one observed with traceroute [15, 16, 17].
We call this phenomenon IGMP filtering. As a conse-
quence, the topology obtained with Merlin is incom-
plete and disconnected: we observe a topology with a
set of disconnected IGMP components. The main pur-
pose of this paper is to reassemble these disjoint com-
ponents at the router level.

In this paper, after presenting the basics of IGMP
probing and Merlin (Sec. 2), we quantify the impact
of IGMP filtering on the multicast topologies collected
with Merlin (Sec. 3). First, we propose a method-
ology to evaluate how IGMP filtering impacts the col-
lected topologies (Sec. 3.1); then, we provide results (see
Sec. 3.2) of the proposed methodology on three different
large ASes. Those topologies are heavily fragmented,
most of the fragments being made of a single router.
Based on traceroute traces and, thus, the use of a hy-
brid graph, we suggest a technique for estimating how
far each fragment is from others and demonstrate that
most of them can be reconnected using only two IP hops
sequence. As multicast fragments are “close” to each
others, we can expect to efficiently reassemble them: we
demonstrate how we are able to merge most IGMP com-
ponents into a larger connected multicast component.
To this aim, in Sec. 4, we propose a recursive approach
that comes with the advantage of limiting the complex-
ity of the topology reconstruction as well as potential
errors introduced at each step. In Sec. 5 we present
and discuss the results of our reassembling approach.
Using the Merlin probing stage, we first obtain a par-
tial view of the targeted ISP and, next, we use a ju-
dicious combination of classic topology discovery tools:
traceroute and alias resolution campaigns (in order to
keep the router level view of Merlin). The complexity
space of the alias resolution phase is controlled using
the notion of “neighborhood proximity”: thanks to the
hybrid graph analysis, we know that considering only
ICMP and IGMP neighbors of IGMP components al-
ready allows us to provide an almost connected graph.
We applied our approach to three different large ASes
and we show how our proposed reassembling strategy
is able to reduce the number of isolated disjoint com-
ponents to less than just few fragments made of single
router in all cases. For each topology, the resulting fi-
nal graph consists in a unique large component made of
more than 1,000 nodes. Our final topologies are avail-
able at http://svnet.u-strasbg.fr/mrinfo/.

2. IGMP PROBING

mrinfo uses IGMP messages that are designed to al-
low hosts to report their active multicast groups to a
multicast router on their LAN. Most IGMP messages
are sent with a Time-to-Live of 1. However, DVMRP

defined two special types of IGMP messages that can
be used to monitor routers [18]. Although current IPv4
multicast routers no longer use DVMRP, most of them
still support those special IGMP messages. Upon recep-
tion of an IGMP ASK NEIGHBORS message, an IPv4 mul-
ticast router replies with an IGMP NEIGHBORS REPLY

message that lists all its multicast adjacencies with sev-
eral information about their states.

2.1 mrinfo-rec

Our approach in probing the network with mrinfo is
recursive and we call such a probing scheme mrinfo-rec.
Initially, mrinfo-rec is fed with a single IP address cor-
responding to the first router attached to the mrinfo-rec
vantage point. mrinfo-rec probes this router and re-
cursively applies its probing mechanism on all the col-
lected IP addresses. These recursive queries stop at un-
responsive routers or when all discovered routers have
been queried. The same process is run every day. It
is worth to notice that an address not replying to an
mrinfo probe during a given day will not be queried the
days after except if it appears again in a list of captured
addresses. This recursive probing scheme comes with
the strong advantage of being very easy to setup as it
initially requires only a single IP address as input. How-
ever, it has the drawback of limiting the mrinfo-rec

probing spectrum. If the address set specified as input
for a given day corresponds to non-responding routers,
mrinfo-rec will not be able to discover any topological
information.

2.2 Merlin

mrinfo (and, by extension, mrinfo-rec) has several
technical limitations: it suffers from packet fragmenta-
tion (IGMP packets are not correctly reassembled lead-
ing to a loss of information) issue and the lack of multi-
plexing support (a single router can be probed at a time,
making the probing campaign unreasonably long).

To overcome those limitations, we implement Mer-

lin (MEasure the Router Level of the INternet). Mer-

lin is easily configurable to provide an efficient and
network-friendly probing approach: it minimizes the
reprobing risk while it allows one to considerably im-
prove the efficiency of a large scale probing campaign.
The basis of the Merlin architecture is to decouple the
sending and receiving processes in order to avoid the use
of timers between queries and replies and improve the
probing efficiency. With this new scheme, replies are
indexed according to the source IP of the reply, so we
do not rely on the targeted IP anymore. Furthermore,
all replies having the same source IP address are consid-
ered as part of a largest message in order to re-assemble
IGMP fragmented packets of a given router.

On the contrary to mrinfo-rec, Merlin is fed by
both a static list of IP addresses (coming from Archipelago
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dataset [3]) and a dynamic IP address list obtained from
replies. This dynamic list is used for recursion. At the
starting of Merlin, probes targets are taken from the
static list. Once replies are collected, the dynamic list
is built based on publicly routable IP addresses belong-
ing to the neighbor address list and the recursion is
engaged, i.e., Merlin gives priority to targets from the
dynamic list. Each time the dynamic list is empty (i.e.,
the current recursion is finished), Merlin is again fed
with IP addresses from the static list. Recursion first is
a design choice that has been made in order to minimize
the probability of reprobing a given router. Moreover,
this design choice also ensures to collect a connected
part of the probed topology in a short timescale.

Furthermore, we also use our own traceroute seeds as
illustrated in Fig. 4 to recursively refill the seed database.
As depicted all along the paper, we use traceroute traces
both for seeding Merlin and for, in a second phase, re-
assembling disjoint component it collected first. Each
IP address collected via traceroute is targeted with an
IGMP probe for both collecting new IGMP routers or
inferring new aliases using an IGMP unicast resolution
method (i.e., verifying whether a given ICMP IP ad-
dress belongs to a previously collected IGMP router or
not, see Sec. 4.1). In this paper, we extend Merlin

to overcome its IGMP view limitation and expand the
initial multicast graph using common active topology
discovery tools. More details about our global architec-
ture is given all along the paper when necessary.

It is worth to notice that Merlin is not designed to
retrieve the whole Internet (as might be a pure trace-
route probing campaign) but rather to collect relevant
information about the multicast graph properties and
more generally on the internal structure of IP networks.
The native router level view of Merlin, its ability to
infer layer-2 clouds [14] and its probing efficiency makes
it a valuable tool to discover and understand Internet
properties, in complement to other existing active and
passive techniques. In the next section, we focus on
IGMP filtering : some multicast routers may not reply
to IGMP probes leading so to great difficulties when
exploring the topology of a given AS.

3. IGMP FILTERING

Merlin could suffer from the multicast graph “dis-
connection” due to IGMP filtering: some multicast routers
do not reply to IGMP probes (local filtering) while some
other do not forward IGMP queries (transit filtering).
While the second problem can be somehow overcome
with the use of multiple vantage points in a cooperative
distributed platform, the first one is more challenging
as it impacts the collected topologies. Indeed, multicast
routers that do not respond to IGMP probes may di-
vide the resulting collected multicast graph into disjoint
components.

Merlin extends the mrinfo-rec technique (that only
probes connected routers) to improve its coverage by
probing independent seeds, but - due to IGMP filter-
ing - it can provide non connected graphs. Assuming
that the “globally accessible” multicast graph is phys-
ically connected, we can expect that scattered compo-
nents and isolated routers result from non-responding
multicast routers (these routers might be partially seen
at the IP level through neighborhood information of
IGMP compliant routers). Indeed, even a low propor-
tion of non-responding routers may result in an huge
disconnection of the multicast graph. This leads to a
situation in which discovered multicast maps are, actu-
ally, a set of disconnected components.

This “disjoint state” may be exacerbate by unicast
adjacencies lacks. In practice, a multicast router can be
configured at the interface granularity: each interface
can independently support multicast or not. Neverthe-
less, an ISP supporting IP multicast should enable mul-
ticast everywhere in its network to ensure the correct
PIM tree establishment. Some exceptions may arise at
inter-area border routers and AS border routers. An
area border router does not need to support multicast
adjacencies with routers belonging to non-multicast ar-
eas. Between ASes, the BGP routing protocol can use
specific multicast forwarding entries to disseminate PIM
messages. Thus, although it is likely that a multicast
border router will not enable multicast on all its inter-
faces, it is also likely that the multicast graph should
be connected. Even in presence of non multicast adja-
cencies, there should exist at least one multicast path
between each multicast component. Despite this rea-
sonable assumption, it is also true that the connectivity
of the multicast graph can be lower than the physical
one (including unicast-only components).

3.1 Methodology

To evaluate how IGMP filtering impacts the collected
topologies, we considered several ASes. In this pa-
per, we focus our efforts on three large ISPs: Sprint
(AS1239), Level3 (AS3356), and Global Crossing (AS3549).
In the remainder of the paper, all presented results are
related to these three domains 1. We select those ASes
among our set of experiments because a large propor-
tion of their routers replies to IGMP probes and, more
importantly, they are representative of difficulties to ob-
tain a fully connected multicast map.

In this section, we are interested in the connected
components size distribution and in the “distance” be-
tween connected component distributions. While evalu-
ating the connected component size is straightforward,
obtaining the distance between the components is not
that easy. In addition to IGMP probing with Merlin,

1Interested readers can find additional results at http://
svnet.u-strasbg.fr/mrinfo/.
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Figure 1: Compute minimal distance between disjoint IGMP components

we performed a large Paris Traceroute [19] campaign
targeting each IGMP router previously discovered with
Merlin. For this specific analysis, we launch one Paris
Traceroute per /24 prefix per router and we also use
preliminary traces used by Merlin as static seeds. The
combination of IGMP and ICMP replies leads to a hy-
brid 2-tier graph where some nodes are routers (the
IGMP view) and others are IP interfaces (the ICMP
view), as illustrated in Fig. 1(a).

In the remainder of the paper the notation (V,L)
refers to an undirected graph composed of a set of ver-
tices, V , and a set of bidirectional links, L. Apart when
explicitly specified, the valuation of links is uniform
such that the path distance metric only relies on the
number of hops (in terms of IP level links). We have a
graph G1({N,N ′}, {E,E′, E′′}) where: N is the set of
IGMP routers; N ′ is the union of the ICMP IP inter-
faces set and the IGMP border IP interfaces set (only
neighbor IP interfaces - see set B in Sec. 4); E is the
IGMP adjacencies set (router level links between nodes
in N); E′ is the IP level links set (links between nodes in
N ′); E′′ is the hybrid connections set (such that they
inter-connect a router level node and an IP interface
one).

The set {N,N ′} describes nodes in our hybrid graph
and the set {E,E′, E′′} provides edges between them.
The set E′′ is composite since it describes edges linking
nodes of different types (router level or IP level nodes).
An edge a ↔ b belongs to E′′ if and only if a and b
do not belong to the same level nodes set. This corre-
sponds to dashed lines in Fig. 1(a). The set E′′ is the
key point of the analysis since it describes the interac-
tion between the two nodes levels, being therefore the
starting point for reconnecting disjoint IGMP compo-
nents. An edge is added to E′′ = E′′

b

⋃

E′′
n according

to two possible cases: (i) an IGMP router reports a
neighbor IP address that is not locally attached to an-
other IGMP router (this subset is denoted E′′

b ), (ii) a
traceroute intersects a node belonging to N (this subset
is denoted E′′

n). Note that a node in N is a set of lo-

cal IP interfaces, an IGMP alias, such that E′′
n is almost

equivalent to the intersection between IGMP and ICMP
probing coverage. Moreover, it is worth to notice that
we have no guarantee that G is connected (it mainly
depends on the utility of traceroute traces), so that the
distance distribution analysis may be incomplete.

For the specific purpose of our analysis, G1 can be
reduced to a weighted graph G2(V,L,w) where nodes in
V are either connected components of IGMP routers in
the graph (N,E) (such a connected component becomes
a node in the set V ′) or IP interfaces in N ′ whose degree
is strictly greater than two in G (this set of nodes is
denoted V ′′, a ∈ V ′′ ⇔ degG1(a) ≥ 3 ). Thus, we have
V = V ′

⋃

V ′′. The valuation w of an edge in L is the
hop distance between nodes in the graph (V, {E′, E′′}).
Since nodes whose degree is lower or equal than two are
“removed” from N ′ to form V ′′, we keep track of this
distance information: ∀a, b ∈ V, w(a ↔ b)−1 is equal to
the number of nodes ∈ N ′ removed from the shortest
path between a and b ∈ (V, {E′, E′′}) if any, w(a ↔
b) = ∞ otherwise. Note that this reduction operation
preserves distances computed in the initial the graph.
Fig. 1(b) illustrates the reduction operation: after such
an operation, nodes in N ′ whose degree is still greater
than 3 become “junction nodes”, i.e articulation points
of the new graph. Moreover, nodes belonging to the
same IGMP connected component are merged so that
they become a “IGMP cloud”. Fig. 1(c) provides the
resulting graph G2: distances between nodes in V are
updated to reflect the number of hops between them.

Then, the graph G2 can be reduced to a third graph
G3(V ′, L′, w′) where V ′ is the set of connected compo-
nents of IGMP routers, L′ are links between them, i.e.,

∀e = a ↔ b ∈ L′ (a, b ∈ V ′), w(e) = min(dG2(a, b)).

The metric dG2 provides the distances of all existing
paths (in the graph G2) between nodes in V ′ that do
not contain any “intermediate” nodes in V ′. Thus,
min(dg(a, b)) describes the shortest path distance be-
tween a and b using intermediate nodes only in V ′′ =
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Figure 2: IGMP con-

nected component size

distribution

Figure 3: Distance dis-

tribution

V \V ′. For this purpose, we use a modified version of the
Dijkstra algorithm on g(V ′, L, w) where the extract

min distance operation is limited to nodes in V ′′.
From the last reduced graph G3(V ′, L′, w′), we com-

pute its resulting minimal weighted tree with the Kruskal
algorithm [20]. This final computation allows us to ob-
tain a minimal distance distribution between disjoint
IGMP components. Fig. 1(d) illustrates the final re-
sult: {4, 6} is the minimal distances distribution for
IGMP connected component A, B, and C.

The weight of edges belonging to the resulting mini-
mal weighted tree describes the a priori required min-
imal effort to reconnect the topology. This metric has
several advantages but also suffers from the interface
level view provided by traceroute. On the one hand,
it offers insights on the required effort to reconnect the
topology: the more important the distances, the more
intense the reconnection. On the other hand, although
this metric is a priori stable to analyze the evolution of
the topology reconnection (the reconnection of two dis-
joint components does not impact other distances than
those between them), it may suffer from the lack of IP
alias resolution. Indeed, nodes that describe different
IP interfaces (and so different nodes in N ′) may belong
to the same router, and thus falsely increase distances
between disjoint components. Hence, this metric pro-
vides a worst case scenario to reconnect the topology
without relying on any aliasing knowledge.

Fig. 1 illustrates the procedure described in this sec-
tion on a small example. The graph reduction is par-
ticularly useful to limit the dimensions of processed
graphs. Indeed, the interests are twofold: (i) the fi-
nal topology reflects accurately our reconnecting goal,
and (ii), it allows for reducing the time complexity of
applied graph algorithms (Dijkstra and Kruskal).

3.2 Evaluation

Fig. 2 provides the IGMP connected component size
distribution for the three ASes of interest. The hor-
izontal axis, in log-scale, is the component size (i.e.,
the number of routers included in a given IGMP com-
ponent), while the vertical axis is the cumulative dis-
tribution. Although a very low proportion of IGMP

AS1239 AS3356 AS3549

IGMP cmp
#cmp : |V ′| 124 118 33
largest cmp 153 58 276

G1 graph

|N | 328 386 308
|N ′| 5,064 10,610 7,934
|E′| 6,859 15,856 12,667
|E′′| 2,342 3,158 1,342

graph |V ′′| 1,680 3,907 3,366
reduction |V ′′|/|N ′| 0.33 0.37 0.42

Table 1: General statistics

components are quite large (larger than 200 for AS
3549), we see that the vast majority of IGMP compo-
nents are made of a single router (70% for AS1239, 46%
for AS3356, and 96% for AS3549). This means that,
even if Merlin is able to capture one or two reason-
ably large connected components within an AS, most
of the time, Merlin discovers information about iso-
lated IGMP routers. Table 1 provides most relevant
information about graphs studied (for instance the to-
tal number of collected IGMP routers, N). Note that
in the scope of the distance analysis provided here and
for each targeted ISP, we consider all IP interfaces that
were collected by Paris Traceroute towards the AS of in-
terest whereas we apply a conservative IP2AS filtering
in Sec. 4.1.

Analyzing the final graph G3, we observe two no-
table properties. First, onn the three explored ASes, we
notice that most of disjoint IGMP components are “re-
connectable” thanks to our dataset of traceroute traces,
i.e., there exists at least one path in G3 connecting the
vast majority of the pairs of nodes in V ′. Only (re-
spectively for AS3549, AS1239 and AS3356) 2, 6, and 8
IGMP components (made of single router) are discon-
nected from the remainder of the graph (among 33, 118,
and 124 nodes in V ′). Second, Considering the minimal
weighted tree obtained on G3, we discover that all edges
involved in its construction have a weight of two. This
is of the highest importance since it implies that we
can reconnect multicast components using only ICMP
neighbor and IGMP border IP addresses: those two hop
distances correspond to two edges in the set E′′ made
of composite links.

The remaining nodes that do not belong to the con-
nected graph are completely isolated: they do not pro-
vide any path (virtual edges in the distance analysis -
the G3 graph) towards other components. It consists
of IGMP routers that almost provide no useful routing
information (private IP address or stale configurations)
or that we do not succeed to reach using our targeted
traceroute campaign.

In order to better understand distances and path di-
versity in the “meshed logical graph” G3 before apply-
ing Kruskal, we also study the distance distribution be-
tween nodes in V ′. Fig. 3 provides such a distribution.
The horizontal axis gives the distance, while the ver-
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tical axis shows the cumulative mass. We observe dif-
ferent behaviors depending on the AS: for AS3549, all
computed distances are lower than three hops but its
density ( 2×L′

V ′×(V ′−1) ) is quite limited (0.14). In AS1239

and AS3356, the collected hybrid graphs are quite dense
(0.95 and 0.88, respectively). Note that density val-
ues given here does not have the same meaning than
in standard graph theory analysis: indeed, this num-
ber rather means (when it tends to 1) that there exists
an IP level path between almost each IGMP compo-
nent pair but those paths may share a common sub-
set of IP level links. On the one hand, it potentially
implies that using such an additional ICMP informa-
tion we are able to produce a qualitative inference of
the backbone that is likely to be much more connected
than a tree. On the other hand, considering the quite
large distances (we observe paths up to ten hops long),
it also potentially means that Merlin possibly misses
a non-marginal part of the AS due to IGMP filter-
ing. However, (i), large distances may correspond to
combination of traceroutes traces (instead of a direct
shortest forwarding path), (ii), those results are sub-
ject to the potential presence of aliases (implying an
overestimation of distances), (iii), it is possible that
a small amount of non-responding routers may impact
a large amount of shortest paths between IGMP com-
ponents, and, (iv), there probably exists better paths
going through IGMP connected components (here the
paths are pure IP level link ones). In a worst case, the
existence of a large chain of non-responding multicast
routers between distant PoPs in the AS may explain
those large distances. This analysis will be extended
and deepen in Sec. 5 after applying the alias resolution
phase. Moreover, Sec. 5 also provides a deeper study
about the multicast deployment correlated to forward-
ing information.

4. REASSEMBLING COMPONENTS

This section aims at describing our strategy for damp-
ening IGMP filtering. Our main objective is to merge
the maximum possible number of disjoint IGMP com-
ponents into a large one. For that purpose, after an
IGMP probing phase, we use traceroute like exploration

and alias resolution: IP level links and aliased IP ad-
dresses - forming so routers - fill the gap among disjoint
components discovered during IGMP probing.

Except the potential impact of their bias, the choice
of a given alias resolution technique should not affect
the reassembling strategy described in this section. In-
deed, although we consider alias resolution to maintain
a router level view of the topology, our reassembling
technique can work with any alias resolution mecha-
nism. Future work should reveal how a particular mech-
anism influences the resulting topology. As we pay great
attention to the complexity of alias resolution, we as-
sume that a generic alias resolution process consists in
checking sequentially IP addresses pairs. To describe
each approach complexity, we introduce the following
definitions and quantities: The IGMP local IP set M
(|M | = m): Local IP addresses belonging to collected
IGMP routers, m ≈ 2 × |E| + |E′′

b |; The IGMP border
IP set B (|B| = b): Neighbor IP addresses collected via
IGMP routers such that x ∈ B iff x /∈ M , b ≈ |E′′

b |;
The ICMP-IGMP neighborhood set N (|N | = n): IP
addresses discovered with traceroute that belong to the
neighborhood of IGMP routers, n ≤ |E′′

n|; The ICMP
set T (|T | = t): All IP addresses collected with trace-
route that do not belong to N or to M , t ≤ |E′|.

The cardinality of those four sets (m, b, n, t) al-
lows us to accurately describe the cost of the alias res-
olution phase. We organize those four sets such that
they become disjoints. Indeed, in practice, an IP ad-
dress can belong to several sets, for example an IP ad-
dress in N comes by definition from T . Thus, we de-
cide to use the following order to classify IP addresses
: M > B > N > T meaning that if an IP address be-
longs to several sets, we classify it uniquely in its first
ranked set. Note that an address in B may be used to
describe several links when this address is also an ICMP
neighbor for another router. Moreover, in this section,
we apply an IP2AS filtering on T to focus on the AS of
interest and limit the alias space exploration.

Considering the original graph G1 described in Sec. 3.1,
our goal is to progressively “transfer” nodes from N ′ to
N using alias resolution to qualitatively reconnect all
original nodes in N between themselves. Thus, we use
alias resolution mechanisms to gather IP level nodes in
N ′ in order to provide a connected router level graph.
Alias resolution allows for both checking and anti-checking
a set of IP interfaces pairs so that we can also easily con-
clude when IP level nodes are independent in the router
level graph.

Fig. 4 summarizes the whole topology collection pro-
cess. Two steps are required: Discovering and Re-
assembling. The Discovering step is based on IGMP
probing with Merlin, as explained in Sec. 2.2. Mer-

lin is fed with a list of static seeds coming from both
the Archipelago dataset [3] and targeted traceroute (us-
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ing the reachable prefix method described in Rocket-
fuel [21]) filtered to fit with the AS of interest. Then,
to obtain new seeds for Merlin, we launch Paris Trace-
route [19] to dynamically discover new seeds (i.e., dy-
namic seeds on Fig. 4). Those probes target an IP ad-
dress per each /24 prefix of each router collected with
Merlin. This set of traces is of the highest impor-
tance for the Reassembling phase since it precisely tar-
gets discovered IGMP routers. Once the IGMP router
level topology has been collected (the recursive process
ends), we have a scattered topology made of disjoint
IGMP components, as explained in Sec. 3.

The next step, Reassembling (discussed in this sec-
tion), aims at reconnecting the IGMP components in
order to, at best, obtained a single large and highly
connected component. Using IP level links discovered
with our traceroutes between distinct IGMP compo-
nents, the alias resolution step can start. The main
challenge here is to identify IP addresses pairs that
are good candidates for alias resolution in order to ef-
ficiently expand IGMP components and so reassemble
them. We do not want to test all possible pairs: only
selected candidate IP addresses pairs (using a Neigh-
borhood Computation, see Sec. 4.2) are tested using a
standard alias resolution technique, Ally [21]. The alias
resolution recursion continues until no new candidates
are found. At the end of the process, we can expect
to achieve our goal: providing a single large and highly
connected graph at the router level.

4.1 Alias Resolution Complexity

In this section, we study the theoretical complexity
of alias resolution for reassembling isolated components.
Let us denote θ the total number of IP interfaces col-
lected through a topology discovery campaign (in our
case, the union of IGMP and ICMP IP addresses). Us-
ing a sequential and per addresses pair alias resolution
method such as Ally, the total number of pairs to check

in the network is θ×(θ−1)
2 =

(

θ
2

)

, requiring so an overall
complexity in O(θ2). First, it is worth to notice that,
in practice, we can rely on the following assumption:
“when Ally declares an addresses pair as being aliases,
it is sufficient to pick one given of those IP address
to represent the alias for the remainder of the sequen-
tial process”, i.e., cross-validation is useless. Based on
this “representative assumption” and considering a flat
IP addresses list (i.e., there is no clue about potential
aliases in the list) to test containing θ elements, the
overall complexity becomes:

p
∑

i=0

θ − 1 − θi ≤

(

θ

2

)

. (1)

where θi is the cumulative number of IP addresses be-
longing to valid aliases generated during steps 1, . . . , i
and p is the total number of “cluster/alias” in the list

(including clusters having a unique IP interface). The
number of required steps depends on the number of clus-
ters and their sizes.

If the list contains many large aliases, this reduction
may be significant. We decide to base our alias resolu-
tion campaign on this assumption to limit the number
of probes injected in the network and manage alias res-
olution campaign duration.

Other possible reductions may be based on the na-
ture of the IP addresses list: if we have some clue about
possible aliases existence, i.e., the list is not “flat”, it is
possible to greatly improve the alias resolution process.
Let us assume that we have a symmetric similarity ma-
trix Mθ×θ = {mi,j} having transitive properties such
that:

(a) if mi,j ≥ α and mj,k ≥ α, then mi,k ≥ α;

(b) if mi,j ≥ α and mj,k < β, then mi,k < β.

where mi,j gives the probability that the pair (i, j) forms
an alias and α ≥ β are thresholds to practically deter-
mine the alias existence.

Using such a matrix, several approaches are possible.
First, the ranking reduction. The goal here is to favor
the checking of most likely aliases before consuming too
much resources and time. Considering the complexity
given in Eqn. 1, if the addresses belonging to largest
possible aliases are considered as first (i.e., using a de-
creasing order in a ranked list thanks to mi,j values),
then, although the number of steps remains the same
(depending on the p resolved aliases), the overall com-
plexity may be strongly reduced. The faster the growth
of θi, the lower the computation of each p step (IP ad-
dresses belonging to potential alias are no more probed
independently). Second, the clustering reduction. The
complexity cost of the aliasing phase being quadratic,
any “qualitative clustering” attempt on the list to avoid
its flat nature should reduce the overall probing com-
plexity. This technique is suitable for testing disjoint
clusters: the transitive condition is strict (the upper
bound parameter α defines a cluster threshold while
β = α is useless). Third, the non-checking reduction.
When possible clusters are not disjoints (the transitive
condition is lossy such that we do not pay attention to
the upper bound parameter α), it is possible to define a
lower bound parameter β such that when mi,j < β we
do not check the IP addresses pair (i, j).

Those alias space reduction methods can be applied
to any heuristic: DNS information, hop distance esti-
mation, geolocalization, and any other kinds of “mea-
surements”. Before applying them, we decide to focus
our attention on the cardinality of our four sets to un-
derstand the feasibility of the alias resolution phase.
Table 2 provides those numbers (we use a strict order-
ing and classification between sets to ensure their empty
intersection). Note that we introduce a new notation,
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Sets AS number

AS1239 AS3356 AS3549
|M | = m 1,789 2,891 2,339
|B| = b 398 507 418
|N | = n 898 1,295 718
|T | = t 554 2,271 589

|H = B ∪ N | = h 1,296 1,802 1,136
|H ∪ M ∪ T | 3,639 6,964 4,064

Table 2: ASes of interest with respect to quan-

tities

H = B ∪N , to understand the total neighborhood size
of IGMP components (using both the ICMP neighbor-
hood collected through the traceroute campaign and
the pure IGMP neighborhood collected through IGMP
campaign). The size of T is computed as follows: from
the traceroutes we launched towards a given AS, we con-
sider all IP addresses falling in it with a classic IP2AS
mapping. We further consider, on each traceroute path,
the last IP hop before entering the AS and the first af-
ter the AS. This approach is conservative since a border
router of a given AS may use the IP address allocation
space of its neighbor [13]. Note that in the previous sec-
tion the T set was not filtered to verify such conditions.

Considering the values given in Table 2, if we apply
a naive and brute force alias resolution phase, the over-

all complexity will be equivalent to (m+h+t)2

2 (≈ 24.2
million pairs to investigate for AS3356).

In the following we describe how we designed an effi-
cient and network friendly recursive process that scales
with our problem.

To limit this probing overhead, first we assume that
IGMP native aliases (i.e., local interfaces returned by
Merlin) are correct [10] such that the m × (m + b)
sub-cost is useless. It comes that an almost total alias
resolution phase requires approximatively (h+t)2

2 + m×
(t + n) alias operations, i.e., ≈ 18.6 million of pairs.

Another subset of such space, m×(t+n), was already
investigated thanks to the IGMP unicast alias resolu-
tion. As shown in Fig. 4, IP addresses extracted from
the traceroute traces and mapped to the AS of inter-
est were IGMP probed during the Discovering phase.
Although a router provides information only about its
multicast enabled links and interfaces, when probed
through an unicast interface the router still answers pro-
viding the same IGMP reply but with a different source
address. Analyzing the collected IGMP replies, it is
possible to detect duplicated answers generated by dif-
ferent source addresses: merging those router instances
and adding each unicast IP address as an additional
interface allows us to consider the space m× (t + n) al-
ready investigated. If inside our IGMP replies dataset
there does not exist a reply coming from an address ex-
tracted from the traceroute traces, it is reasonable to
consider this IP interface as router level independent of

any routers collected with IGMP. Note that false nega-
tives are still possible since the IGMP reply could have
been filtered in transit. For this reason, we decided
to partially re−explore the m × n space to avoid most
likely problems as it will described in Sec. 4.3. Hence

the complexity is reduced to (h+t)2

2 , i.e, ≈ 8.3 million
of pairs.

Considering results from Sec. 3.2, we expect that
a large portion of the reconnection phase should come
from H so that it is possible to ignore T to initiate
our alias resolution campaign. Indeed, we showed that
it is possible to reconstruct at least a tree capturing
almost all IGMP disjoint components using only path
offering edges with a distance of two. Moreover, we
decide to develop a recursive approach starting from
the borders of IGMP components and then recursively
extend this approach by considering created alias as
new routers. The ICMP neighborhood of these newly
created routers allows us to progressively inject IP ad-
dresses coming from T in the alias resolution phase: a
part of T may be explored when it potentially allows for
extending and merging disjoint connected components.
This approach, developed and formalized in Sec. 4.2, al-
lows us to minimize the impact of T in order to avoid a
“flat exploration” of this set. We use IP addresses from
T only when they become the border of an extension
of the initial graph. At the initialization, our approach
just explores the h2 alias resolution space, i.e., requir-
ing a campaign of ≈ 1.6 million of pairs. In practice,
these values represent the worst case: the computation
considers all the possible pairs when all targeted IP ad-
dresses do not reply to probes, leading each time to
timer expiration.

4.2 A Recursive Alias Resolution Approach

In order to reduce the alias resolution space, we de-
cide to not consider all the IP addresses extracted from
traceroute traces but only those that are located “close”
to routers in the already discovered topology. Hence,
our method starts by trying to alias ICMP neighbors
and IGMP neighbors (the set H) to generate new routers
and, thus, expand each connected component. Then,
considering the neighborhood of each new aliased routers,
we recursively re-apply the same alias resolution mech-
anism, progressively expanding the current topology.

The main advantage of such an approach is the alias
resolution space reduction by carefully using IP ad-
dresses belonging to T . To formally describe our re-
cursive approach, let us introduce some notations. We
define the sets Hi as follows:

H0 = H = B ∪ N step 0
Hi = Ni \ Ki−1 step i.

(2)

where Ni is the set of IP addresses depicting the neigh-
borhood of new aliases generated during the (i − 1)th
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step and a set Ki is computed such that Ki =
⋃i

j=0 Hj .
Hence, Hi only contains the new ICMP neighborhood
Ni that has not been already considered in the previous
steps. Such a set allows us to progressively inject T IP
addresses in the process if they belong to the neighbor-
hood of newly generated aliases. Since already explored
IP addresses pairs are not checked again, we use Ki to
depict the union of all discovered neighborhood since
the beginning, i.e., Ki = B ∪ N ∪ N1 ∪ ... ∪ Ni. Using
those notations, we can easily describe the exploration
complexity at each step i, as O(|Hi| × |Ki|), with the
very first step (i.e., i = 0) being O(h2). Hence, the
overall complexity becomes:

O(h2) +

R
∑

i=1

O(|Hi| × |Ki|). (3)

where R is the total number of steps performed. It is
difficult to predict the value of R since the recursion
continues as long as new aliases are generated and their
neighborhood is not empty, i.e., while Ni 6= ∅. In prac-
tice, since we prefer to limit the alias resolution propa-
gation error, we decide to use a fixed and constant value
for R (see Sec. 5.1).

Note that the representative assumption given in Eqn. 1
is used during the recursive alias resolution phase to
fasten the process but it is not taken into account in
Eqn. 3 because of its unpredictable nature. Without
cross-validation to ensure transitive clusters, the nota-
tion |Ki| simply depicts the number of already com-
puted IP clusters in previous iterations.

4.3 Practical Details and Improvements

We provide here some technical details allowing us to
improve the alias resolution phase. Two kinds of im-
provements are made: (i), fasten the alias resolution
process with information collected by active measure-
ments, (ii) reducing the complexity of the alias resolu-
tion between recursive stages.

First, (i), as described by Pansiot and Grad [22] and
implemented in iffinder [23], we complete the alias reso-
lution with an address-based method: the source sends
a UDP probe with a high port number to the routers
interface X. If the source address of the resulting “Port
Unreachable” ICMP message is Y , then X and Y are
aliased in the same router. This kind of information
can be retrieved from our traceroute campaign. We fur-
ther modify Paris Traceroute so that it clearly indicates
whether the destination has been reached or not. This
way, when targeting one interface of a known IGMP
router, the corresponding traceroute clearly shows that
the router is reached and reports a final IP address
X. If X does not appear among the set of know in-
terfaces, we can safely add it as a new interface of the
targeted router. Although limited in number, by ana-
lyzing those modified traceroute traces we were able to

discover additional unicast interfaces of IGMP routers:
8 for AS3549, 22 for AS3356, and 4 for AS1239.

Second, (ii), we make use of two non−checking re-
duction’s strategies: we avoid checking a pair of IP
addresses if (a) they appear in the same traceroute
trace, (b) or they are contained in the same subnet
/31. Future works will investigate more sophisticated
approaches (for example exploiting the IP subnet allo-
cated to IGMP layer−2 devices [14]). Moreover it is
also possible to carefully manage the alias resolution
exploration space between each recursive stage. Be-
tween each recursive step, an additional linking stage
is performed: when a traceroute reveals a direct con-
nection between two router level nodes, a new link is
added in E. Since the neighborhood information ob-
tained with IGMP queries could be incomplete (unicast
lacks - see [10] - or even empty for ICMP aliases), it is
possible that two consecutive IP addresses in the trace-
route traces belong to two known router level nodes
without these routers revealing the link by themselves.
In such a case, even if we do not know one of the IP
interfaces involved in the link, we can infer a new link
between two router level nodes and possibly reconnect
IGMP disjoint components. Let us denote N(r) the
ICMP-IGMP neighborhood set of a given router level
node r. When the traceroute discovers an ICMP link
between two router level nodes a and b thanks to the
IP i on b, then the set N(a) excludes i. Between mul-
ticast nodes, this kind of links reveals unicast lacks as
explained in Sec. 5.2. Moreover, for each connected
component A, we apply a second process: for each IP
address belonging to the set N(a), a ∈ A, we try to
alias IP addresses in N(a) to the MA set (i.e., a rep-
resentative set of IGMP local IP addresses belonging
to IGMP routers of the component A and linked to a).
This set is specific for routers in A and, to reduce the
alias resolution complexity, we only pick one IP address
per considered router. When an alias is inferred with
another router b ∈ A (x ∈ N(a), y ∈ b | x ∈ b), we
add x to b and we exclude it from N(a). Indeed, since
multicast IGMP alias may miss a unicast interface, it
is possible that the IP address x is “internal” to the
connected component A (it is not necessary to consider
it for the reconnection between disjoint connected com-
ponents). This step allows us to possibly reduce the IP
level neighborhood of a and, so, the overall complexity
of subsequent alias resolution procedures (in particular
when |MA| < Ni and if an alias is generated). It also
allows for enforcing the exploration of the m × n alias
space and in a lower extent the m × t one.

5. REASSEMBLING EVALUATION

For this evaluation, we target the same ASes than in
Sec. 3: Sprint (AS1239), Level3 (AS3356), and Global
Crossing (AS-3549). We followed, for each AS the over-
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(a) routers (b) links

Figure 5: Routers and links created at each step

of the reassembling process

all methodology depicted in Fig. 4. First, a Merlin

probing campaign is launched towards each AS from five
vantage points: Strasbourg (France), Napoli (Italy),
Louvain-la-Neuve (Belgium), Hamilton (New Zealand),
and San Diego (USA). While Paris Traceroute cam-
paigns were launched from all the vantage points to-
wards multiple interfaces of each router (a single IP
address for /24), the alias resolution phase itself, that
makes use of the information retrieved from the trace-
routes, is performed for each AS by a single monitor.
The main reason here is to avoid interference between
monitors when they try to infer alias in the same AS
topology: it could result in the exceeding of the ICMP
rate-limiting threshold and makes the routing domain
silencing our probes.

In our implementation of the reassembling strategy,
we make use of Ally for performing the alias resolution.
Recently, novel approaches were proposed (see, for in-
stance, Sherry et al. [24] and the survey by Keys [7]) to
solve the alias resolution problem: any alias resolution
technique can work with our proposal. Evaluating the
impact of using a particular alias resolution technique
is left for future work.

Measurements were done between April, 4th 2011 and
April, 9th 2011. The monitor located in Napoli was
assigned to reassemble the topology of AS1239, and
two monitors located in Strasbourg were assigned for
AS3549 and AS3356.

5.1 Alias Resolution Stage

In this section, we focus on the number of generated
aliases and their impact on the reassembling process.
We consider a network component as a node only if it
has at least two IP addresses. It implies that, when an-
alyzing the graph evolution during recursive iterations,
we do not consider IP addresses that are not aggregated
in an alias (we ignore negative alias: only positive ones
are considered in the router level node set).

We aim at demonstrating that most of the alias phase
benefit comes from first recursion stages and requires
a reasonable amount of time. In Sec. 3.2, we demon-
strated that using only a set of minimal distances of
two hops between IGMP components makes possible to

reassemble almost all disjoints fragments. We should
thus be able to provide a fully connected topology after
a single iteration of the reassembling process. Indeed,
since we create new routers/aliases all along the bor-
der of disjoint components, we should be able, in the
best case, to reduce the distance between components
by two hops per iteration.

However, as we only consider new aliases in the graph
reconnection, results given here represent a lower bound
to study the “quality” of our reassembling scheme. In-
deed, IP interfaces involved in two hops or longer paths
(providing so minimal distances between IGMP frag-
ments) must generate positive aliases in order to be
considered in the graph reconnection. Sec. 5.2 provides
a more friendly perspective by considering as poten-
tial nodes all network components tested during the
alias exploration phase. Our goal here is rather to fo-
cus on positive alias resolution performance. We also
aim at showing that our reconnection strategy is able
to quickly reduce the number of disjoint components
by generating aliases and revealing so lower distances
between IGMP fragments.

Fig. 5 shows the cumulative number of nodes (Fig. 5(a))
and links (Fig. 5(b)) created at each step of our re-
cursive process (the horizontal axis). Note that “iter-
ation 0” on Fig. 5 refers to the situation before apply-
ing the reassembling process: it provides the original
IGMP graph after adding some traceroute IP interfaces
to IGMP routers (IGMP alias unicast resolution) and
after correcting one hop distance with the process ex-
plained in Sec. 4.3.

The number of new routers and links created at each
iteration seems to slowly decreases: in particular, for all
evaluated ASes, at least as many links are introduced in
the first iteration as in subsequent iterations. AS3356
shows a specific behavior: it seems more subject to pos-
itive alias generation. For other ASes, the gain seems
to become marginal after three or four iterations: the
number of new alias slows down and most of the links
have been discovered earlier. Based on this observation
and the cumulative bias introduced by Ally, we decide
to stop our recursive process after five iterations. Note
that a number of k iterations is able to ideally solve dis-
tances of 2 × k hops. Intuitively, a distance of k corre-
sponds to a potential reconnection path made of k hops
(i.e., a path of k links allowing to merge several IGMP
components). In Sec. 5.2, we decide to cap the number
of iterations to k = 2 in order to limit the number of
false information potentially generated by Ally, and a
priori, reconnect all IGMP fragments. Most of the ben-
efits comes from the first two iterations: it allows for
solving four hops distances.

Fig. 6 provides an analysis of the evolution of dis-
joint IGMP components over the recursive process. In
particular, Fig. 6(a) shows how the number of disjoint
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(a) Disjoint components evo-
lution

(b) Component size distribu-
tion

Figure 6: Connected components analysis

components decreases over time. According to results
obtained in Sec. 3.2, the first iteration should be almost
sufficient to reconnect the graph. However, here we con-
sider only reconnection paths involving aliases created
during the previous k iterations. Thus, results provided
here gives a lower bound describing only the impact of
generated alias. It allows for understanding whether re-
connection paths are subject or not to potential alias.
Considering this point of view, the number of IGMP
components decreases from 33 to 24 for AS3549, 118 to
45 for AS3356, and 124 to 10 for AS1239. The reduction
level highlights each network specificity regarding our
measurements: AS1239, and in a lower extent, AS3356
offers a good alias performance, a significant number of
alias is generated during the first step allowing so to fix
most of two hop distances. On the contrary, AS3549
does not provide such efficient results: either a small
amount of IP addresses we retrieve forms aliases, or
Ally does not work within this AS. The impact of the
alias resolution phase reveals the level of dependency
among forwarding paths discovered through our trace-
route campaigns. For AS1239, it seems that almost
all two hop distances are subject to alias favoring so
the almost complete reconnection during the first iter-
ation. Although limited, further iterations still induce
the merging of IGMP components using solely alias.

Since our goal is to reconnect the components while
preserving the reliability of the preliminary topology
provided by the IGMP probing phase, it is important
to not underestimate the bias introduced by the alias-
ing resolution technique: Ally may generate false neg-
atives and false positives [7]. Although in both cases
we face inaccuracies, the false positives have the worst
impact on the rebuilt topology. Indeed, if a new aliased
router consists of false positive IP addresses, the er-
ror will affect its neighborhood and thus the way the
overall topology grows. Due to the cumulative nature
of this error, we decide to consider as final topologies
the ones obtained after only two iterations. Note that
this seems also reasonable at the light of results given
in this section: most of the reconnection paths involv-
ing useful alias results from the first iteration. Fig. 3,
i.e., the same distribution but before applying the re-

Figure 7: Reassembling

AS3356: pairs investi-

gated

Figure 8: Distance

Analysis

assembling process. Fig. 6(b) shows the efficiency of
the alias process used for our reassembling technique.
For instance, before applying it, the largest component
in AS1239 was made of 153 routers. After the second
iteration, the largest component is made of 393 nodes
and only 9 components (made of a single router) are
still isolated. On other ASes such as AS3356, we can
notice that some low distance reconnection paths do not
seem to involve alias so that we still have a significant
number of isolated IGMP fragments after studying four
hops paths. Fig. 5 and Fig. 6 showed us that strategic
reconnection paths (the ones exhibiting short distances
lower than four hops) involve generally a great number
of alias demonstrating so the good coverage and the de-
pendence among IP interface level nodes we consider.
In particular, it highlights the efficiency of using H: it
allows for considering new low distances and eventu-
ally merging previous dependent ones thanks to a great
number of generated aliases during the first iteration.
In AS1239, we observe that a large proportion of aliases
are created using B involving so multicast neighbors.
Finally, it seems also to indicate good density proper-
ties considering the inter-connection subgraph. In the
next section, we will refine this analysis by considering
all independent IP interfaces as nodes to better under-
stand the reconnection efficiency of our approach.

Fig. 7 gives an insight into the practical efficiency of
our reassembling technique, focusing on AS3356 (the
worst case). The figure provides the cumulative num-
ber of IP addresses pairs tested for alias at each step of
the process. We label as alias (plain line) pairs of IP
addresses that are declared as aliases by Ally. On the
contrary, non-alias (dashed line) are declared as anti-
aliases by Ally. Finally, timeout (dotted line) refers
to IP addresses pairs triggering a timeout: no decision
has been made by Ally due to the absence of replies
by one of the targeted addresses. Note that once an
IP address generates a timeout expiration, we remove
it from the set of IP addresses to explore. While pos-
itive or negative aliases are generally quickly inferred
(between one and two second), timeout expirations im-
plies to wait between two and four seconds. Obviously,
the number of positive alias is lower than the number
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of negative alias or even timeout probes. We can ob-
serve that the number of pairs investigated remains sig-
nificant in last iterations. It seems that the recursion
process continues to discover an important IP neigh-
borhood on newly introduced alias. The number of IP
pairs to investigate stay almost stable after the first iter-
ation (it only slowly decreases after the first iteration):
while the first iteration costs obviously a great part of
the alias exploration, we did not expect such a “costly
evolution” during subsequent steps. Note that Fig. 7
also helps us understanding the save in the alias space
exploration due to reduction offered using the represen-
tative assumption (Eq.1), our set our “non-checking”
rules and timeouts. Indeed, only 105, 739 pairs are ex-
plored among h × (h − 1)/2 = 1, 622, 701 theoretical
possible pairs leading so to a save of almost 95%.

5.2 Final Topology Analysis

On the contrary to Sec. 5.1, here we take into account
all network components that appear to be independent:
router level nodes such as IGMP routers and generated
aliases as before, but we also consider a subset of sin-
gle remaining IP interfaces (the ones that have been
involved in the alias exploration). Indeed, IP addresses
that do not form aliases while they have been tested
with others should be separate entities forming so in-
dependent nodes in the final graph. Our goal is then
twofold: (i) show that we provide large and well con-
nected graphs using both positive and negative alias,
and (ii) validate our expectations about the multicast
use in several Tier-1 backbone.

Fig. 8 shows the impact of our recursive alias reso-
lution approach on preliminary distances computed be-
tween native IGMP components. For this analysis, we
consider the final resulting graph and apply the method-
ology described in Sec. 3.1 to obtain the G3 graph.
Although, most of IGMP components are now recon-
nected, we continue to distinguish IGMP native discon-
nected components from the rest of the graph (newly in-
troduced alias and IP level nodes). Compared to Fig.3,
we notice a great shift towards lower distances: even for
the worst case (AS3356), we observe that almost 80%
of distances are now lower than six hops instead of ap-
proximately 60% before alias computation. It is also
worth to notice that the alias resolution phase allows
one to compute new distances and can make the G3

graph denser. When several IP addresses are merged
into a given alias, the distance resulting from a combi-
nation of traceroute traces may decrease: on the con-
trary, when it results from a unique direct forwarding
trace, the distance is fixed. On AS3356, although most
of distances decreases, maximal distances are incom-
pressible: they result from direct and unique forward-
ing traces. However, note that this “distance oriented
graph” is so dense that large distances are not necessary

to make the reconnected graph meshed. Again on this
new graph G3, that includes aliased nodes, we compute
the minimal weighted tree and find a set of edges whose
weights are lower or equal than two. Note that a weight
of one can be obtained with an alias including N and
M IP addresses (see Sec. 4.3). Finally, we notice that
this phase does not permit to capture remaining discon-
nected components: as before we discover two, six, and
eight lost routers for respectively AS3549, AS1239 and
AS3356 (see Sec. 3.2). Those single isolated routers are
impossible to reconnect due to the low level of neigh-
borhood information they provide.

Table 3 gives an overview of the final graph character-
istics. In particular, we focus on its multicast/unicast
structure. Indeed, from information retrieved through
IGMP probing, we can classify routers into several cat-
egory: IGMP stands for native IGMP routers, MA

for Multicast Alias, UA for Unknown Alias, MIP for
Multicast IP (coming from the B set), and UIP for
Unknown IP (coming from the N ∪ T set. Note that
we consider a subset of IP level nodes (coming from the
H ∪ T set) as router level nodes when they have been
tested during the alias resolution phase. Indeed, it does
not generate false positive nodes (i.e., we do not con-
sider two IP addresses as being separate nodes as long
as they belong to the same router) because all those
IP addresses have been checked between themselves2.
A Multicast Alias (MA) is computed as such only if at
least one IGMP IP address belonging to it (coming from
the B set), otherwise the resulting alias is considered as
an UA (we cannot infer its nature when we only find IP
addresses in the set N ∪ T ).

In Table 3, we also provide a detailed analysis about
the nature of retrieved links. We classify links accord-
ing to four categories: (i) IGMP links between two
IGMP native router (IGMP1), (ii) IGMP links (result-
ing from IP addresses in B) between multicast compo-
nents (IGMP, MA, MIP nodes but with one IGMP node
involved at maximum - IGMP2 : the number in brack-
ets being the total number of such links and the value
given as first is related to links involving MIP nodes),
(iii) ICMP links between nodes whose nature is un-
known (UIP and UA nodes, ICMP1), and, (iv), ICMP
links between multicast nodes (IGMP and MA connec-
tions involving at least one IGMP router, ICMP2).
Depending on the AS of interest, those values are really
fluctuant. In particular, considering unicast links be-
tween multicast nodes (ICMP2), we can observe that,
while their proportion is lower than 4% for AS1239
and AS3356, they represent more than 20% of links for

2In practice, we may have some false positive nodes because
we do not explore all the m × n space. However, if uni-
cast links between multicast routers that we do not discover
thanks to IGMP unicast alias resolution are considered as
exceptions, false positives cases should be very marginal.
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Routers Links Graph Inter-cmp.

AS #total: 1076, 1958, 1363 #total: 1692, 4091, 4929 analysis Vision

number IGMP MA UA MIP UIP IGMP1 IGMP2 ICMP1 ICMP2 D ∆ Â d δ
AS1239 328 34 40 51 623 335 57 (337) 957 63 3.145 0.003 10 3.628 0.005
AS3356 386 50 124 418 980 372 1,320 (1,489) 2,028 202 4.179 0.002 14 4.732 0.003
AS3549 308 17 41 376 621 567 568 (602) 2,610 1,150 7.233 0.005 9 8.269 0.008

Table 3: Global statistics on the final graph

AS3549. Moreover, among the 20% of such links discov-
ered in AS3549, the vast majority of them are unicast
links between IGMP native routers that we can discover
with the IGMP unicast alias resolution process. This
large difference suggests that the multicast is not de-
ployed in the same way within this AS. A such large pro-
portion implies that the multicast and unicast forward-
ing tables seem to diverge. We can also observe that this
AS graph is much more dense (inside and outside IGMP
native components) than the two other ASes graphs.
Indeed, the two last parts of Table 3 shows the connec-
tivity of resulting topology at the global scale (Graph
analysis) and at the inter-component scale (Inter-cmp
vision). We provide average degree (D, d for respec-
tively global and inter-component scales), density (∆, δ
for respectively global and inter-component scales), and
diameter (Â) computed on the three ASes. The AS3549
graph seems sufficiently dense to deploy multiple topol-
ogy in order to distinguish unicast and multicast traffic.

Based on the overall analysis of Table 3, we can con-
clude that, while best results in terms of multicast struc-
ture are achieved on AS1239 (we have a low number of
unicast links and a high proportion of border IGMP
IP addresses involved in terms of generated alias), we
obtain a very meshed networks for AS3549 that seems
to present high redundancy patterns to increase failure
tolerance but that is also more subject to false posi-
tives (we need to intensify the m × n alias exploration
to better integrate the large presence of unicast links).

To push further our connectivity analysis, we decide
to remove unicast links and links not involving multi-
cast components (at least on one extremity). We want
to understand if the final topology is able to provide at
least a multicast tree (we consider ICMP1 links as po-
tential multicast links if they inter-connect MA aliases
or MIP). In practice, we only use ICMP links when we
cannot determine their nature because of the lack of na-
tive IGMP information: when we extend the topology,
MA nodes do not provide their multicast neighborhood
such as IGMP nodes, so that we cannot draw any con-
clusion on their connectivity nature.

Considering the three ASes of interest and their re-
sulting reduced edges set, we still have connected graphs
that are likely to be fully multicast. It seems to con-
firm our first expectation: there exists at least a con-
nected multicast structure in the backbone of targeted
ASes. Depending on the routing strategy, this structure

is then more or less similar to the complete network
backbone that includes unicast-only components.

The number of unicast routers (UA) and even more
the number of unicast links between multicast routers
(ICMP2) could indicate that there are some unicast-
only components inside the multicast core. This could
be explained by the following reasons: (i) ECMP: mul-
tipath next hop entries dedicated to the forwarding of
multicast traffic can be a subset of the unicast table.
(ii) IGP weight and “backup links”: according to the
destination, some forwarding tables can diverge because
of links only used to reroute unicast traffic (and prob-
ably break the PIM tree in case of failures while pre-
serving unicast traffic to support lower capacity). (iii)
Multi-topology of IS-IS: it is possible that some IS-
IS routing domains use two routing maps to distin-
guish multicast and unicast traffic. (iv) Unicast Bor-
der Routing: Links to only unicast nodes/leafs are not
multicast enabled. The BR (Border Router to limit
internal areas) and ASBR (AS Border Router dealing
with BGP routing) belonging to a given routing do-
main may distinguish multicast from unicast traffic. A
non multicast LAN could be connected to several mul-
ticast routers (for redundancy reasons) by unicast only
interfaces. (v) Traceroute limitations (MPLS, load bal-
ancing, etc): traceroute may reveal false links. (vi) Ally
limitations: Ally may reveal false aliases [7].

6. RELATED WORK

IGMP filtering explained in Sec. 3 is somewhat equiv-
alent to ICMP filtering encountered by traceroute. In-
deed, a router along the traceroute path might not reply
to probes because the ICMP protocol is not enabled,
or the router employs ICMP rate limiting. In order
to circumvent such an ICMP limitation, the traceroute
vantage point activates a timer when it launches the
probe. If the timer expires and no reply was received
within the timeframe, then, for that TTL, the distant
hop is considered as non-responding. The TTL is then
increased so that the next hop can be probed. Such
a non-responding router is called an anonymous router.
In the literature, techniques have been proposed to infer
more accurate topologies in the presence of anonymous
routers [15, 16, 17]. Those techniques are mostly pas-
sive in the sense that they do not require additional
probing: Yao et al. proposes a graph minimization ap-
proach [15], Gunes and Sarac a graph based induction
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technique [16], while Jin et al. suggested an ISOMAP-
based dimensionality reduction approach [17].

Rocketfuel [21] tries to collect the best possible pic-
ture of ISPs, typically ones that are in the center, not on
the edges of the Internet. Rocketfuel is based on trace-
route and makes used of, roughly, 800 vantage points
and nearly 300 traceroute web servers. Rocketfuel uses
Ally to convert interface level maps into router level
ones. Compared to Rocketfuel, we rely on alias resolu-
tion to improve its cartography on the non-IGMP re-
sponding routers. Further, by definition of traceroute,
Rocketfuel will likely provide a tree-like map, while we
are able to map a whole connected component.

7. CONCLUSION

In this paper, we improved IGMP based topology dis-
covery by presenting a new hybrid tool based on Mer-

lin for circumventing IGMP filtering: a subset of mul-
ticast routers does not reply to IGMP probing causing
therefore the partitioning of the collected graph into
several disjoint connected components. While the Mer-

lin probing stage collects a set of disjoint IGMP com-
ponents, we use traceroute and alias resolution tech-
niques to reassemble them at the router level and, thus,
extend the mapping of the targeted routing domain.
After having defined a hybrid graph model capturing
the heterogeneity of the collected data (at both router
and link level views) to better understand the impact
of IGMP filtering, we develop a recursive reconnection
approach based on the neighborhood proximity to limit
the complexity of the alias resolution phase. Our strat-
egy allows for reducing the amount of false inferred links
and routers introduced by current topology discovery
techniques: although it is likely that the inferred graph
forms a partial view of the real targeted network, we
favor false negatives amongst false positives. Our ap-
proach is particularly efficient for discovering the multi-
cast enabled backbone of large ASes. Indeed, our prob-
ing campaigns show that IGMP probing is a relevant
approach to initiate the capture of the core of large
multicast ASes.
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